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ABSTRACT

Pressure, .volume, and energy equation of state data obtained using

shock wave techniques are presented for aluminum and Teflon. Solid

aluminum samples initially at room temperature or preheated to near

melting, and porous aluminum samples at room temperature, were studied

over a pressure raage of 200 to 1200 kbar. It was found that the

laivzest variations of volume and energy could be achieved using porous

samples. Values of Grfneisen's ratio estimated from values of the

thermal pressure and thermal energy range from 2.1 to 1.37. Due to

the sensitivity of Grfineisen's ratio to the Hugoniot data, it is not

possible to formulate its energy or volume dependence conclusively at

the present time. Of greatest significance is the fact that it does

not vary widely.

Solid and porous Teflon samples were studied over a pressure

range of 100 to 500 kbar. Hugoniot curves drawn on the basis of the

ten data points obtained indicate a variation of Grfineisen's ratio from

about 0.7 to 2.0.
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SECTION I

I NTROUETION

Calculations describing wave propagation in a continuous medium re-

quire the knowledge of a constitutive relation or equation of state

characterizing the material properties of the medium. In solids at

pressures greatly in excess of the shear yield stress, an equation of

state relating pressure, volume, and internal energy sufficiently de-

scribes the medium. The nork reported here was undertaken to study the

equation of state of aluminum and Teflon using shock-wave techniques.

The largest portion of the effort was spent investigating aluminum.

In order to reach thermodynamic states lying in a region of the pressure-

volume plane rather than along a single Hugoniot curve, the initial state

of the material must be varied. This variation was achieved by using

solid and porous aluminum at room temperature and by preheating solid

aluminum to several hundred degrees prior to shocking. It was found

that the largest changes in the final shock state could be produced

using porous samples.

The following sections include a general discussion of equations

of state of simple systems and how they may be studied by shock waves,

a description of the experimental techniques used and the performance

of the experiments, and an analysis of the data and comparison with

other data and equations of state.



SECTION II

BASIC THERMODYNAMICS OF SHOCK WANTS

1. EQUATIONS OF STATE

The term "equations of state" has unfortunateiv been used in shock

wave literature to denote a variety of relationships which convey dif-

ferent amounts of thermodynamic information about the system under con-

sideration. Quite frequently curves such as isentropes. adiabats, or

llugoniots are referred to as equations of state. The specification of

one of these curves is not a specification of the equation Gf state of

the system because an equation of state is a function of at least two

independent %ariables. The purpose of this section is to summarize the

basic thermodynamics of equations of state of simple, nonreacting, single

phase systems.

In a simple system the two independent variables are generally taken

to be any two of the four %ariables volume, pressure, temperature, and

entropy, denoted by V. P, T, and S, respectively. Expressions for the

remaining two as functions of the two so chosen constitute a complete

equation of state, since they yield a complete thermodynamic description

of the system. Each of the relationships independently is called an

incomplete equation of state, or simply equation of state. Given the

two relationships, T = T(S,V), P = P(S,'), which can in principle be

inverted so that any pair of variables is independent, the internal energy

is given by

dE = TdS - PdV (1)

Knowledge of the internal e:iergy E(S,V) is then equivalent to the twu

equations oi state T(S,I') and P(S,!') since

T(S.V) , P(SV) = (2)

The function E(S 1') is frequently called a fundamental equation or zonplete

equation of state because it also contains a complete thermodynamic

3



a-..ri............ s ,t,. ai v uuu T are chosen as independent variables,

then S(V,T) and P(V,T) form a complete equation of state. Analogous to

Eq. (1), the Helmholtz free energy is given by

dF -SdT - PdV (3)
I

and F(V,T) is the fundamental equation equivalent to the two equations

of state S(V,T) and P(V,T) since

S(V,T) -'- ), P(V,T) / - (4)

Similarly the enthalpy function H(S,P) and the Gibbs free energy G(P,T)

serve as fundamental equations when the independent variables are the

pairs (S,P) and (P,T) respectively. Complete equations of state may be

formulated in other ways; all formulations of a complete equation of

state are equivalent and can be deduced one from another through general

thermodynamic relationships.

Quite frequently one of the incomplete equations of state is the

internal energy E(V,T) or E(P,V). Recall that the internal energy is a

complete equation of state or fundamental equation only when it is ex-

pressed as a function of S and V. If E(V,T) is known, supplementing it

with either P(V,T) or S(V,T) constitutes a complete equation of state'.

Similarly supplementing E(P,V) with either T(P,V) or S(P,V) constitutes

a complete equation of state 1.

In shock wave research the incomplete equation of state E(P,V) is

of parti.ular interest. This equation of state involves only the mechani-

cal thermodynamic variables P, V, and E and does not yield values of the

thermal thermodynamic variables S and T. Shock wave measurements yield

an E(P,V) incomplete equation of state since the values of pressure,

volume, and energy are computed from the Rankine-Hugoniot jump conditions

expressing the conservation of mass, momentum, and energy, that do not

involve the entropy and temperature explicitly.

If one is known, the other can be determined in principle from Eq. (1).
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Let us then summarize. In a simple thermodynamic system there are

two independent variables. These two are generally chosen from V, T, S,

and P. An equation expressing one of the remaining pair as functions of

the independent variables is called an incomplete equation of state.

Expi'ession of both remaining variables in terms of the two independent

variables is a complete equation of state, i.e., a set of relationships

from which all other thermodynamic properties of the system can in prin-

ciple he computed. Tha internal energy may be added to the above quartet

of variables, but it is related to them through Eq. (1). An isentrope is

the intersection of the incomplete equation of state surface P = P(S,V)

with a plane S = constant. Thus, prescribing an isentrope P = P(So, V) = f(V)

is not prescribing an equation of state. Similarly a Hugoniot curve is

obtained by subjecting an E(P,V) incomplete equation of state to the con-

straint

1
E(P,V) = + I (PO + P)(Vo - V)

where E0 = E(Po,Vo). Specifying a Hugoniot curve is not specifying an

equation of state of the system.

2. MIE-GRJNEISEN EQUATION OF STATE

It was stated earlier that equation of state information obtained

from shock wave data leads to an incomplete equation of state of the

type E(P,V) This equation of state tells the value of the internal

energy of the system over a region of the pressure-volume plane but does

not contain the information necessary to compute the temperature or

entropy in the same region. Since temperature and entropy are thermal

thermodynamic variables, as contrasted to pressure and volume which are

mechanical thermodynamic variables, the E(P,V) equation of state might

be suitably called a mechanical equation of state. The energy, pressure,

and volume are obtained from shock data by measuring wave ielocities and

applying the Rankine-Hugoniot jump conditions expressing conservation of

mass, momentum, afid energy.

In problems of flow calculations the incomplete E(P,V) equation of

state may be sufficient since it doe3 permit calculaticn of the curves

of constant entropy in the pressure-volume plane. The constant value of

the entropy associated with each isentrope is unknown, however. One

P-V-E equation of state which has been extensively used in describing

5
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metals is the Mie-Graineisen equation of state with the Groineisen ratio

F assumed to be a function of volume only. In general the Graneisen
' parameter, as for all thermodynamic state variables, is a function of two

independent variables and is defined by

V(XPYI-I( _PIT) (RS/V)T
-YEv g (BE/BT)y VT(BS/BT)V

where X and Y represent any two of the five variables E, P, S, V, and T

which are chosen as independent. We shall define the generalized Mie-

Grineisen equation of state as the solution of any one of the partial

differential equations of Eq. (5) when F(X,Y) is specified All of the

definitions of Eq. (5) are equivalent and may be derived one from another

by applying thermodynamic identities.

Using the last definition of Eq. (5),

V 04 T P4 0 (6)

Along an isentrope S(V,T) = constant and

dS = -idV + -dT = 0 (7)

Therefore the isentropes in the V-T plane are given by the integrals of

( BTs  F(V,T) (8)

The usual Mie-Graneisen equation of state as applied to solids is obtained

by writing the pressure and internal energy each as a sum of 0°K compres-

sional component and a thermal component:

E(V,T) = E (V) + Eth(VT)

P(V,T) PC(V) + Pth(V,T) (9)

where P (V) = -dE (V)/dV, the subscript c refers to 0°K. and the thermalC C

components vanish for all V at T 0. Also the Grfneisen parameter F is

T 7' j r7 7 70



taken to be a function of volume alone, i.e., - F(V). In this case

integration of Eq. (8) yields

T = ¢'S)(V) (10)

where

I!' V~d

,'(V) = 0oe 1 v (11)

and OD(S) is function of the entropy and hence constant along an isentrope.

The thermodynamic definition of the temperature combined with Eq. (10)

gives

T(SV) = 4 - 4(S)O(V) .(12)

Integration of Eq. (12) then yields

E(S,V) - Ec (V) = 6(V) Jo'(S)dS (13)

since E(Oo V) - E(). Equation (13) is a fundamental equation since

it expresses the internal energy E as a function of S and V. This equa-

tion can be evaluated explicitly as a function of S and V if the functions

EC (V), ID(S), and 6(V) or P(V) are known. Thus, for a system in which r is

a function of volume only, the specification of EC(V), P(V), and O(S) con-

stitutes a complete equation of state. The pressure is given by

P(SV) = -I I - - O(S)dS (14)
1 SdV dV

But -dEC(V)/dV PC(V) and therefore

F(v).6( ) r05

P(SV) = P (V) + ,(S)dSC V J

P(V)
= PC(V) +- [E(S,V) - E (V)1 (15)

where Eqs. (11) and (13) have been used. Eq. (15) is the usual %lie-Gr~neisen

equation of state and does not require knowledge of the entropy through O(S).

7
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Equation (15) could h..ve been obtained by direct integration of the first

form of Eq. (5). However, this method shows what information is needed

to form a complete equation of state and how the E-P-V equation does not

depend upon entropy.

Consider now the specific heat at constant volume as a function of

T and V. The change in CV(V,T) along an isentrope is given by

(-aj, 'a (~V) -a ) V %*;*v)S

T ) \-(Cv) (a) (16)

using C. = T(OS/T)v and (BT/V)ss -(OP/S)v. Furthermore, since

T = (PE/S), and ('P/OT) v = (aSIV)T,

- r - (1c R7)V

T ( - T 7 JV J

= CLk/j = 1"\a/ (18)

vjv

If F is a function of volume only, Eq. (18) shows that C~, T) is constant

along an isentrope. Thus Cv(i',T) -=Cv[I/(S)] is some function of the entropy

only. Eq. (9) implies that when F is a function of volume only7

8



Thus for F =.'F(V) the specific heat at constant volume is given by

CV(V,T)-: gt-1) (20)

One special case of interest is the Debye model of a solid. A result

of this model is that the specific heat at constant volume is a function

of 0D(V)/T where OD(V) is the Debye characteristic temperature. Identify-

ing GD(V) from the Debye model with 0(') in Eq. (20) and using Eq. (10)

yields a relationship between Grineisen's ratio 1F(V) for a Debye solid

with the Debye temperature 0D(V)

d In 0D(V)F(1') = (21)
d In V'

Slater (Ref. 11 suggested a relationship between F(V) and the isen-

trones of the system based on the Debye model and the assumption that in

an elastic solid the ratio of the longitudinal sound speed to the trans-

verse or shear sound speed is independent of volume. This assumption is

equivalent to assuming that the ratio of the isentropic bulk modulus to

the isentropic rigidity modulus is volume independent or that Poisson's

ratio is volume independent. The Debye characteristic temperature is

given by (Ref. 1):

2  2V
9 =(V) A[ + (22)

where CL and CT are the longitudinal and transverse sound wave velocities

respectively and A is a constant.

In GD =In A In 2V + In C + -n (2 + Cc ) (23)3 3

d n 0 .) d I n C L 2d=O - -+ dnL(24)

d In V 3 d In V

where it has been assui:red that CTI CL is independent of volume. The

longitudinal elastic wave velocity is given by

CL [V(K + 4 (25)
3

9



where K is the isentropic bulk modulus and A. is the rigidity modulus.

InCL In V +- In K +- In + (26)I 2 2 2

Since the assumption Cr/CL is independent of volume implies A/pK is inde-
pendent of volume,

d In CL 1 1 d In K
- (27)

d In V 2 2 d In V

Now

K = v -Lv (28)
Iavs

d In CL ". (p 2p/lV 2 )
()-- -

d In V 2 (BP/V)s

Combining Eqs. (29) and (24) yields

d In OD V (p 2 p/lV 2 )s 2[(') - d_ - - (30)d In V 2 (P/ aV)s  3

This is the Slater relation for Grfineisen's ratio in terms of the deriva-

tives of the isentropes. It has been derived on the basis of the Debye

model and the assumption that the ratio of the sound speeds is independent

of volume. Since F has been assumed dependent on volume only, the ratio

of the partial derivatives on the right hand side of Eq. (30) is also

dependent on volume only, that is, indepndent of entropy. Since the

relation must hold then on any isentrope at a given volume, it must hold

on the isentrope S = 0 which is also the isotherm T = 0.

Dugdale and MacDonald (Ref. 2) propose that the Slater relation be

modified to

V -82 pV2/3 )/-8V2 1

F(V) - % 1 (31)
2 B(PV2 1 3 )/ V 3

10



where again P refers to the isothe-rm T = 00 K. The Dugdale-NlacDonald

relation has been used in extensive calculations by Rice, McQueen, and

Walsh (Ref. 3) based on shock data.

In summary, the usual form of the Mie-Griineisen equation of state

is that of Eq. (15), which is a consequence of assuming F = F(V). If the

Debye model of a solid is used, !(V) and the Debye characteristic tempera-

tore are related by Eq. (21), Substitution of the expression for the

Debye temperature, Eq. (22), into Eq. (21) plus the assumption of constant

Poisson's ratio, yields the Slater relation between F(V). and the 00K

isotherm.

Equation (15) may be written

P - p (V) RV) [E-E M1
Ci C

The point P, V, E refers to any arbitrary equilibrium state in the

region of the pressure-volume plane for which Eq. (15) is valid. PC(V)

and E (I') are the compressional pressure and energy at that same volume.
C

Equation (15) says, then, that the thermal component of the pressure at

volume V is equal to F(V)/V, a function of volume, times the thermal com-

ponent of the energy at the same volume. In particular, if the pressure-

volume, energy state under consideration lies on a flugoniot curve centered

on state P0" V0" E0" Eq. (15) becomej

F(vr)
P- P() =P [E - Ec(V) ]  (32)

Subtraction of Eq. (32) from Eq. (15) yields

H (V)P - PH - |' [E - E ]  (33)

Equation (33) now says that at volume V the difference in thermal pressure

between the state P, V.- E and the Hugo~iot centered at Po- V.' 0. E0 is equal

to F(V)/V times the difference in thermal energy between state P, V. E and

the Hugoniot. Since 00K isotherms are nc-t directly measurable as are

Hugoniot curves, it is convenient to use the equation of state in the form

of Eq. (33) with the flugoviot as a reference. If F(V) is assumed to have

a constant value G and the experimental Hugoniot is expressed as a function

of A = (ppo)- 1, Eq. (33) can be written

11



P = P(p) + GpE' (34)

where p = 1/V and E' E - EHI the thermal energy offset from the Hugcniot.

The Hugoniot internal energy and pressure are related through

E H =E o +-P (V - V)

= E0 + (35)2p

Substitution of Eq. (35) into (34) yields

P = P1(1 , 2j j+ Gp(E-Eo) (36)

where E is the total internal energy and E0 is the internal energy at the

foot of the Hugoniot P,(p). Equation (36) is valid for G(p) as well as

G constant. However, if G or & were to have an energy or temperature

dependence, the P-V-E equation of state would not have had the form of

Eq. (15) which led to Eq. (36). If P is a function of the energy as well

as volume, the generalized Slie-Groneisen equation of state is given by

integration of the differential equation (5) defining F(EV). Taking

E and V as independent variables

RES,V) =M 1(5

Integrating at cunstant V

r f !(E.V),d. (37)P- P :) V (F)

where E,(V) and Pr(V) are the energy and pressure at some reference point

at the volume V.

3. SHOCK WAVE MEASUREMENTS OF EQUATION OF STATE

A series of experiments, in which shock waves of varying intensity

are produced in a material and measurements of the resulting shock and

particle velociLies are made, )ields a Aingle Hugoniot curve uniquely

specified by the initial state. The specific voluoe V and pressure P

12



are related to the shock and particle velocities through the equations

V u
-= 1 -- (38)
i'0 U

and

P = PoUu

which express the conservation of mass and momentum, respectively. The

energy along the Hugoniot curve is given by

S E P(0"o - V) (40)

where E0 is the energy at P = 0, V = V0. As stated earlier, a single

Hugoniot curve is not an equation of state; it is only a particular pressure-

volume curve along which the energy can be computed from Eq. (40). A

P--E equation of state consists of knowing the energy over a region of

the P°V plane. For each initial state there exists a different Hugoniot

curve. Therefore, by varying the initial state of a system, shock-wave

experiments can be used to generate many Hugoniot curves in the P-V plane

which then may be used to infer the dependence of the internal energy on

volume and pressure.

In the work to be described, preheated material, porous material, and

multiple shocks have been used to vary the initial state. The preheating

technique consists of initially heating the material, aluminum in this

case, at zero pressure to near its melting point. The initial volume

increases due to thermal expansion and the initial energy increases by

an amount AE = fCpdT. The double shocking technique consists of reflecting

the initial shock induced in the material from a -aterial of high shock

impedance, tungsten for example. The state behind the first shock then

serves as an initial state for the reflected second shock. The use of

porous materials, described first in the open literature by the Russians

(Bef. 4), produces a large increase of thermal internal energy in the

sample during shock compression due to the irreversible collapse of the

porous structure. Due to the large thermal energies, Hugoniot curves of

both positive and negative slopes are observed. (BRefs. 5. 6, 7) Such

behavior of the Hugoniot curves of metals can be explained by using the

ordinary Mie-'rfneisen equation of state with = F(V) or a more elaborate

equation ofstate taking account of thethermal contribation of the conduction

electrons.
13



SECTION III

EXPERIMENT4L TECHNIQUE

To obtain Hugoniot points for aluminum which do not all lie on a

single curve the three approaches described in Section II of this report

have been attempted. These are single shocking porous material, double

shocking porous material, and preheating the material; only the first

method was used extensively. In studying Teflon, the first method was

used exclusively. In this portion of the report are described sample

preparation and experimental technique.

1- METHOD OF OBTAINING HIUGONIOT DATA

Hugoniot points were determined by the impedance match method

(Ref- 3), using 2024 aluminum as a standard, as illustrated below for a

porous aluminum specimen. At the driver-porous aluminum interface a shock

is transmitted into the porous aluminum and a rarefaction is reflected

back into the 2024 driver. Since

the Hugoniot and relief isentrope A

cross curves in the pressure (P)-

particle velocity (u) plane for

2024 aluminum are known,

(Befs. 3,8) a measurement of the

free-surface velocity of the

2024 driver and the shock veloc-

ity through the sample suffice to

fix a point on the Hugoniot of

the sample. The measurement of D

the driver free-surface velocity

gives the point C on the P-u dia-

gram of figure 1. indicating thatN I
the initial shock state in the Ou c

driver is state B. All of the

states which the 2024 can reach FIG. 1 IMPEDANCE MATCH METHOD OF

from state B through a reflected DETERMINING A HUGONIOT

15



isentropic rarefaction lie on the cross surve CDB. Since there must be

continuity of pressure and particle velocity at the 2024-porous aluminum

interface, the shocked state in the porous aluminum must also lie on this

cross curve. Equation (39) requires that the Hugoniot point of the porous

material lies ona ray through the origin of slope poU/m, where m is the
porosity, p 0 is the crystal density of aluminum, and U is the shock veloc-

ity through the sample. Hence the intersection of this ray, OD, with the

cross curve, CDB, yields a point on the Hugoniot of porous aluminum.

2. DESCRIPTION OF EXPERIMENTS

a. Rcom TEMPERATURE SHOTS

Shocks were induced into 2024 aluminum drivers, upon which the samples
were mounted, by high explosive in direct contact or by the impact of an ex-

plosively accelerated flying plate. The direct contact driver system con-

sisted of an 8-inch-diameter plane wave lens2 initiating apad of 9404 HE,

4 inches long and 8 inches in diameter, in contact with a 3/8- or 1/2-inch-

thick 2024 aluminum driver plate.

Most of the experiments required flying-plate systems because of the high

pressures desired. The samples were mounted ona 3/8- or 1/4-inch-thick 2024

aluminum driver plate. A strong shock wave was produced in the driver by

impact of a 1/8- or 3/16-inch-thick stainless steel or brass flyer plate

(see figure 2). In all cases an 8-to-9-inch-diameter explosive pad, ini-

tiatedbya plane wave lens, was used to accelerate the flyer plate across a
3/4-inch or 1-inch air gap. To prevent spalling and breakup of the flyer,

it was separated from the explosive pad by a 1/16-inch Plexiglas buffer.

All velocities were determined by optical techniques with a rotating

mirror streak camera at a writing speed of 3.73 mm/i sec. Multiple slits

were used and illumiiiation was by an explosive argon light source. Mea-

surement of shock velocity through the samples was made by small glass

mirrors Londed to the driver free surface and aluminized Mylar bonded to

the steel rings in which the porous samples were pressed. Destruction of

the mirrors on the driver surface gave the arrival time of the shock at

the driver-sample interfbac and the destruction of the Mylar gave the

arrival time of the shock at the sample free surface.

Measurement of the free-surface velocity of the 2024 aluminum driver

plate is made by mounting a mirror inclined at a small angle on the driver

2 P-80, Pantex.
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STAINLESS STEEL FLYER PLATE
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./ PLANE-WAVE INITIATOR P81

ALUMINUM DRIVER PLATE

FRONT VIE.W SIDE VIEW

FIG. 2 FLYING PLATE DRIVER ASSEMBLY

surface 'Ref. 91. The mi rror is rnou:zted so that. the slit, the normal to

the dri ver surface, and the no!-mal to tile inclinied mirror -0 1 i iC in the

same plane, as shown in figure 3. The motion of thef free surface destroys

the inclinced mirror continu~ously over a small tirnc interval giving an

an~gular cutoff of reflected light, intensity on tbe film (see figutre -1)).

The mirror angle is chosen so that, tile velocity of tfic point o5* collision

is supersonic, thereby eliminating the possibility of a premnature cuteff

due to stress waves in th' mirror. The aluiniuzed s'jrfece of the mi rror

is covered by a th in (I. milI) steel shim t,, prevent premature cutoff by

DIRECTION OF CAMERA SLIT

STEE SHI, \ INCLINED MIRROR

SHIOCK ARRIVAL SHOCK ARRIVAL
M~IRROR -MIRROR

2024-ALUMINUM DRIVER LT--X.

FIG. 3 INCLiNED MIRROR TECHNIQUE FOR FREE-
SURFACE VELOCITY MEASUREMENT
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microjetting or by a shock in the ambient gas. The mirrors mounted on the

surface on either side of the inclined mirror indicate shock arrival at

the free surface and any tilt the shock front may have. Knowledge of the

initial angle at which the inclined mirror is mounted, the writing speed

of the camera, the magnification of the camera permit calculation of the

free-surface velocity from the angle of light cutoff on the film.

Since the plane area on the driver having uniform pressure and simul-

taneous breakout time was less than 4 inches in diameter, iuuch care was

used in layout of samples and free-surface mirrors. Samples were mounted

at the same distance from shot center as the driver-state inclined mirrors

in order to minimize the effect of radial pressure variation. A typical

streak camera record is shown in figure 4. Figure 4a is a still picture

of the shot face showing the mirrors with an image of the three streak

camera slits enposed over them. Slits I and 3 record data from the two

samples being studied. On slit 1 (slit 3 is identical), mirrors 1 and 2

are on the driver and record the arriv..l time of the incident shock at the

driver-sample interface. The aluminized Mylar on the circular sample re-

cordp the arrival of the shock at the sample free surface. M.irror 6 is an

inclined mirror mounted to measure the sample free-surface velocity in the

manner just described. The free-surface velocity of the aluminum driver

is measured on slit 2 by inclined mirrors 7 and 8 while mirrors 3, 4, ard

5 are on the driver surface to detect shock arrival and tilt.

The streak camera record from this shot is shown in figure 4b. From

slit I (and similarly for slit 3) the transit time At of the shock through

the sample and the inclined mirror cutoff yielding sample free-surface

velocity are obtained. From slit 2 the inclined mirror cutoffs yielding

driver free-surface velocity are determined.

To reduce extraneous shock light a methane atmosphere surrounded the

samples. This proved particularly effective on multiple slit shots.

Similar techniques were used in obtaining high pressure data bydonble

shocking of initieliy porous aluminum. A small tungsten block was placed

over half of the sample and two slits observed the sample. One of the

slits recorded the shock velocity through the sample in the manner just

described while the other slit, observing the baif of the sample covered

by tungsten, recorded the free-surface velocity of the tungsten. A third

slit recorded the 2024 aluminum driver free-surface velocity just as did

slit 2 in figure 4. The free-surface velocity of the driver and the shock

19



VAlvoiy iariough the sample yield the state behind the initial shock in

the sample just as before. Upon reaching the sample-tungsten interface,

the initial shock is transmitted as a shock into the tungsten and re-

flected as a second shock back into the sample. A measurement of the

f free-surface velocity of the tungsten together with the Hugoniot of tung-
I sten as determined by McQueen and Marsh (Ref. 10) yield the state behind

the transmitted shock in the tungsten. Because of continuity of pressure

and particle velocity across an interface, the same pressure-particle

velocity state exists behind the reflected wave in the sample. The final

specific volume and energy behind the reflected wave may then be calculated

by appropriately applying the jump conditions across the reflected shock.

b. EXPERIMENTS USIhG PREHEATED 1060 ALUMINUM

Solid 1060 aluminum samples were heated to temperature in excess of

500'C and then impacted by an explosively accelerated brass plate. Mea-

surements of shock velocity through the sample and of the impact velocity

suffice to determine a Hugoniot point for the sample if the Hugoniot of

* the flyer plate is known. The experimental arrangement for studying

heated samples is shown in figure 5. Two samples of 1060 aluminum, one

to be heated and the other is a cold control sample, are mounted in an

aluminum base plate such that the flyer plate strikes the samples directly.

The sampie to be heated (on the left in figure 5) is supported in a quartz

enclosure to insuiate it thermally from the base plate. It is heated by

a resistance-wire heating elcment and the temperaturcs of both the hot and

cold samples are monitored by thermocouples as shown, The face of the shot

is viewed through the slits of the streak camera. Using the polished

surfaces of the samples to refiect light from an argon light source, the

shock velocity i, determined by recording the time of arrival of the shock

at two thicknesses on the sample in much the same manner as with the porous

samples. The free-surface velocity is determined by measuring its time of

flight across the central gap to a quartz mirror.

Independent measurements of the flyer plate velocity are made by two

sets of mirrors mounted in the flight space on the same radius as the
samples. The successive aestruction of the reflectivity of the central

mirror and then the two outer mirrers of each sit gives the time of flight

over a 5/32-inh gap just prior to flyer,-sample impact.
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TOP VIEW

THERMOCOUPLE POSITION $ STREAK CAMERA SU.T POSITIONS

TUBULAR QUARTZ
HEAT SHIELD ALUMINUM BASE PLATE

HEATING ELEMENT

A COLD AWMINUM SAMPLE /A

HOT ALUMINUM SAMPL THERMOCOUPLE
POSITION

ANNULAR QUARTZ INSULATOR&

THERMOCOUPLE POSITION 'W FLYER PLATE VELOCITY MIRRORST --- _ .... .. .. ... .... ... . - ---- ----.. .... ... ... . ..- -- .

SIDE VIEW

HOT ALUMINUM SAMPLE QUARTZ MIRRORS FOR SAMPLE
TUBULAR QURT FREE SURFACE VELOCITYTUBULAR QUARTZ

HEAT SHIELD- It . !

HEATING ELEMENT, COLD ALUMINUM SAMPLE

ALUMINUM BASE PLATEf '\

ANNULAR _ /A z
QUARTZ INSULATOR STAINLESS STEEL RADIATION SHIELD (0.001" THICK)
PLEXIGLAS BUFFER-,-~ BRASS FLYER PLATE (1/6" TIK-

SECTION A-A

FIG. 5 EXPERIMENTAL ASSEMBLY FOR FIRING PREHEATED SAMPLE

Directly behind the base plate is a 0.001-inch-thick brass or stain-

less steel radiation shield. It was found desirable in two of the shots to

include this heat shield to prevent excessive heating of the flyer plate

and the explosive pad. The flyer plate of 1/8-inch brass was accelerated

over a 1-inch free run. Brass was used in these experiments since exten-

sive Hugoniot data on brass are available from th2 work of McQueen and

Marsh (Ref. 10). Prior to firing, the entire assembly was pumped down to

pressures below 5 glig.
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3. SAMPLE PREPARA' ')N

To prepare the samples, aluminum powder of high purity was pressed

in steel rings to the desired density. The values of porosi'v m, defined
;!7 by a = Po/P. where p0 is crystal density and pi is the apparent density,

were set at 1.4, 1,7, and 2.0.

The commercial aluminum powder (Reynolds # 40 Atomized Powder) had

an average particle size of 30 ± 5 microns but the rather lar..e iang'" of

particle sizes made sieving necessary. The samples of porosity a 2- 1.4

and a = 1.7 were made from powder which was passed through a # 65 mesh
sieve (208-micron openings). In order to press samples of porosity

r = 2.0 that were strong enough to be handled, it was necessary to use a

larger particle size. These samples were made from powder which passed

through a # 50 mesh sieve (300-micron openinvs) but not through a § 65

mesh sieve. None of the samples required sintering.

No experiments have been performed on this project to evaluate the

effect of particle size on shock wave propagation in porous aluminum.

Russian workers (Ref. 6) made such studies on porous copper and lead and

concluded that, in the 100-300 kbar range, changing the particle size

from 0.5 A to 100 pL did not affect the shock velocity. 3 It would seem

that particle size would be a significant variable in the low pressure

region where compaction of the porous structure is incomplete. However,

no experiments have been performed to evaluate the effect of particle

size on wave shape or on the approach to equilibrium in the pressure

range of interest here. Both theoretical and experimental studies of

this problem are needed to establish the validity of using porous materials

to attain high temperature-low compression states by shock wave techniques.

To make a sample, a weighed-portion of powder was carefully leveled

in a massive steel piston cylinder arrangement which held the steel support

ring. After pressing several times to a thickness stop, the sample was re-

moved in its ring and weighed and measured for density and thickness. The

uncertainty in the average density of a typical sample was -0.15 percent.

Optical records of shock transit times through the specimens indicated

that they were of uniform density. A thickness-to-diameter ratio for the

samples was chosen to provide a central region of uniaxial strain (free

3However. for tht large particles, the shock rise time smy be no longer negligible. and thus the question
may arise as to what portion of the profile is being detected asshck arrival."
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from edge effects) sufficiently largeTalI

to perform precise measurements- A TEFLON SAMPLE MAUEET

typical sample was 3116-inch thick and ______________

1-1/2 inches in diameter, surrounded by SAMPLES0 THICKNiESS INITIAL DENSITY
_______ (inaches) (g/cS3 )

a steel ring (l!8-Inch wall thicknessy 2-A 0.1870 2.-1639 =0 0046'

and covered on one side with 0.007-inch- 2-B 0.1839 2.1697 = 0 _0035'

6 0.4949 6 1.472thick aluminized Mylar. 10 0.4944 b1.489
10-A 0.1874 1.525

Solid aluminum samples were simply 10-B 0-19096 1-51
I a -049116 I1.511

machined and lapped from 1060 aluminum. 9 042 L437

!-A QI1885 0-783

The solid and porous Teflon samples I1IB 0-1742 0.778

were obtained fro-m Avco Corporation a. Slices of as-receiveC! sauples indicated

(for description of preparation, see by letter oa sauple nucber
6- Fhaesions of each as-receiveeJ sasnl-e

Ref. 11), in the form of disks nominally weried by stwera1 si!s. Average

2 inhesin iamterai~dlf2inc thck. values are given.
2 inhesin iamterai~ 1/-inh tick A value of Fo0 2-1668 gOcn; was us.-d

They were sawed, ground, and dry lapped incalculating the porosity a.

to size (nominally 3/16-inch thick) and

their porosity was determined by direct measurement of dimensions and

weights. Teflon sample densities are shown in Table 1.
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SECTION Il'

EXPERIMENTAL RESULTS

ii I. ALUMINUM DTI DATA

The measured free-surface veloci_ies oi the 2024 aluminum driver plates

and the measured shock and free-surface velocities of the solid and porousI aluminum samples are presented in Table II. The pressure-particle velocity

Table 11

SOLID AND POEOUS M.L1NVM ShOCK DATA

2024 DRIVEER SPECJN-le

INO FREE- SURFACE laitial Stock Free-SurfaceStr O. VELOCITY I O I I reSufc
( -s€sity Veiocity Velocity€a/isc g/c23) (AM1.9sec) (v*& Sec)

"-- 1.0

11,470 2.89 2.70 7.31 2.97
11.570 3.60 2.70 7.75 --
11,563 5.03 2.70 8.77 --
11,460 5-35 2.70 9.06 5.42
11.562 5-61 2-70 9.13 --

11.477 2.29 1-93 5.g3 3.235
10.59i 5.07C 1.92 .15 5 3.43
10.592 3.86 1.92- 7.79 5.93

113 = 1.711n,155 3._% L5.9 5-. 3.- %
11,296 3._6 159 5 .82 4 .146
11.062 4.02 1.59 5.93 4.53
10.876-1 4.67 1.59 6.58 5.21
10,876-2c 4.67 1.59 6.30 5-25
10.926 4.97 1.53 6.83 5.53

- 11,330 5. 4 1.59 6.90 -.-2
10.591 507C 1. 5 6.91 5-25 -6
10.694 3.43 1.39 7.29 3.95
11.303 5_72 1.3? !7.g9-
10.392 5.86 1.38 .3 6-241

2.0
S11, 15:5 3..% 1-35 5.09 4.51b

11.286 3.96 1.35 3.37 4.16
11.062 4.02 1.35 5.64 5.11
10.926 4.97 1.33 6.72 6.08
11.330 5.04 1.35 6.79 5.846jJ 10,894 5.42 13 7.i6 6.85
11,379 5.84 1.35 7_2911 .305 5.72 1.35 .32 -

]i -All specitms were mizall-y 3/26-i=,k thick. except fer the 3,*6-iari

speciu of Sbt No IO.5t(-2.

LAlca~~tshia A free srfa-e.I CAjute value (se text).
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states in the samples were obtained through an impedance match solution

tI using the 2024 aluminum as a standard, as described in Section Il1. The

2024 aluminum Hugoniot and release cross curves were obtained from

Dr. 9. G. McQueen of the Los Alamos Scientific Laboratory. The processing

of the porous aluminum data consisted of first plotting the specimen shock

velocity against the driver plate pressure that was inferred from the mea-

sured free-surface velocity (using the LASL cross curves). This plot of

primary data (not included in this report) served as an initial check on

the scatter in the data. The data for each of the porosities 1.7 and 2.0

defined a smooth curve. The data for porosity 1.4 were not as abundant as

for the other porosities. In one shot (No. 10,591), the record yielding

the free-surface velocity of the driver plate was ambiguous. Therefore,

the point for the sample of porosity 1-7 was made to lie on the shock

velocity-driver pressure curve which was well defined by the other data

points. In so doing, the point for the 1-4 porosity sample was brought

into a position consistent with a smooth curve through the remaining points.

The pressures, particle velocities, volumes, and energies computed from

the primary data by use of the impedance march technique and the Rankine-

ifugoniot jump conditions are presented in Table III- Some of the data

reported in Tables II and III differ slightly from those reported earlier

in the progress reports. The data have been rechecked for errors in calcu-

lations, &nd questionable shot records have been reanalyzed. The present

results reflect the changes arising in the reexamination.

The porous aluminum data are plotted on a shock velocity-particle

velocity diagram in figure 6. Plotted on the same figure are some porous

aluminum data obtained by Avco (Bef. 11). Straight lines represent all the

data quite well for a = 2.0 and 2 = 1.7 over the rangt investigated. The

three points for a = 1.4 lie on a straight line. The three highest pressure

Avco points for a 1.5 lie between the lines for a = 1.7 and a = 1.4 but

indicate a different slope. The two lower Arco x = 1.5 points appear ques-

tionable (indicated by parentheses) as they irply pressure-volume states

which are quite scattered from the remainder of the data.

Bepresentation of shock data for porous material by a linear shock

velocity-particle velocity relationship is invalid for the purpose of ex-

trapolation tG lower pressures. The relationship

S C + Su (41)

26



Table III

SOLID AND PORMUS ALU. HIUGONIOT DATA

INITIAL SHOCK PARTICLE FI INTEMNAL

SHOT NI O~.l VELOCITY VELOCITY PRESURE10 g COMPRESSIO a  ENERGY ]
3/g (kbar) _ = p/P - I(10%GE

11.477 0.370 7.-31 1.45 286 0.297 0.250 10.65

11,570 0.37u 7.75 1.80 377 0.284 0.302 16.21

11,56- 0.370 8.77 2.46 583 0.266 0.391 30.31

11.460 0.370 9.06 2.58 633 0.265 0.396 33.23

11.562 0.370 9.13 2.71 667 0.260 0.423 36.56

11,477 0.519 5.08 1.88 184 0.328 0.128 17.57

10,591 0.520 7.15 3.03 418 0.299 0.237 46.18
10,592 0.521 7.79 3.42 511 0.293 0.262 58.25

11,155 0.629 5.43 2.43 ' 210 0.347 0.066 29.61

11,286 0.631 5.82 2.67 246 0.341 0.085 35.67

11,06.2 0.629 5.93 2.69 254 0.344 0.075 36.19

10,876-1 0.630 6.58 3.05 319 0.338 0.094 46.57

10,876-2 0.629 6.50 3.06 316 0.333 0.11 46.76

10.926 I 0.631 6.83 3.20 347 0.335 0.1C4 51.35

11.330 0.631I 6.9 3.25 355 0.334 0.107 52.72

10,591 0.633 6.91 3.26 356 0-334 0.107 53.22

10,894 0.630 7.29 3.44 397 0.333 0.111 58.95

11,305 0.631 7.49 3.58 426 0.330 0.121 64.11

10.592 0.635 7.55 3.66 436 0.327 0.131 67.14

11.155 0.741 5.09 2.58 177 0.365 0.0136 33.19

11,286 0.741 5.57 2.82 212 0.364 0.0164 33.85

11,062 0.741 5.64 2.85 218 0.367 0.0081 40.76

10,926 0.741 6.72 3.37 305 0.369 0.0027 56.73

11,330 0.740 6.79 3.41 313 0.369 0.0027 58.06

10.894 0.741 7.16 3.60 3M8 0.36e 0.005-0 64.90

11.379 0.744 7.29 3.85 377 0.351 0.0541 74.08

11,305 0.741 7.32 3.78 373 0.360 0.0277 71.05

Values of p based on crystal dcasity P 0 = 2.70 g/c 3 .
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where C and S are constants, implies a pressure-volume lHugoniot given by

Po C2 [1 - V/n 'o j

P M (42)
[1 - S(l - V/mV 0 )] 2

where V0 and p0 are the initial specific volume and density, respectively,

of the solid material. The pressure vanishes at mV0 in Eq. (42), rather

than at V0 as it must in a model that assumes zero crushing strength of a

porous soLid. Although the crushing strength is not actually zero, the

low pressure extrapolation of Eq. (39) indicates a much higher pressure

and greater curvature of the Hugoniot than is consistent with very low

pressure experiments carried out in this laboratory on another project

(Bef. 12).

The data have been plotted in the pressure-volume plane in figure 7.

Shown also on the figure are the Hugoniot of solid aluminum from Al'tshuler

and the 00 K isotherm from the McCloskev program (Ref. 13). Measurements of

the density of the solid 160 aluminum yielded a value of 2.70 g/cm 3. The

Russians quote a value of 2.71 g/cm 3 for the density of aluminum used in

their experiments. To make their Hugoniot comparable to the data reported

here each of their volumes at a given pressure was changed by a factor

2.71/2.70. This maintains the shape of the curve but translat- it. slightly

toward the right, i.e., larger volumes. During the course of studying

aluminum, it was also found that the Los Alamos Hugoniot curve for

2024 aluminum could be made to agree quite closely with the Soviet Hugoniot

for pure aluminum by translating the 2024 curve to the right by a factor of

2.78/2.71, the ratio of the initial densities. Smooth curves have been

drawn through the porous aluminum data. These curves do not represent ana-

lytical fits to the data nor are they obtained from the straight lines of

figure 6. They have been extrapolated to zero pressure and crystal volume

(dashed portion), so as to be consistent with a negligible crushing strength.

In the absence of data at very low pressure, there appears to be no a priori

justification to make any other type of extrapolation.

The two highest pressure points on the Hugoniot for porosity m = 2 have

not been weighted in drawing the curve through those data. The evidence

suggests that the abrupt change in slope indicated by those points is not a

real property of the aluminum but rather an effect of shock attenuation.
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The attenuation is due to the overtaking of the shock by the rarefaction

from the back svrface of the flyer plate. There is no conclusive proof

that this is the case, but calculations based on sound speeds in solid

aluminum indicate that, in the high-pressure porous aluminum experiments,

the margin of safety for obtaining data free from attenuation effects is

quite small. In figure 7 two points on the Hugoniot of porosity in = 1.7

are labeled t = 3/16 inches and t = 3/8 inches, where the t refers to the

sample thickness. Both samples were mounted on the same type of driver

plate. The driver under the 3/8-inch sample was struck by a 3/16-inch

flyer plate while that of the 3/16 sample was struck by a 1/8-inch flyer.

Attenuation will be most likely for the smallest ratio of specimen thick-

ness to flyer thickness, i.e., for the thickness sample in the present

case. Indeed, it appears that attenuation did affect the thicker sample.

The few experiments performed on this project to attempt to evaluate shock

attenuation effects indicate a need for more studies in shock wave propa-

gation in porous materials.

The uncertainties in each of the points in figure 7 were calculated

by a computer program which takes into account uncertainties in measured

wave and free-surface velocities and in the initial density of the sample-

According to Eq. (15), if the Graineisen ratio is dependent only upon

volume, it represents the ratio of the thermal pressure to the thermal

energy density

P -P(V) Pth

E -E(V) Eth

where the subscript "th" means thermal. In cases where Grneisen's ratio

is a function of volume plus another independent variable, Eq. (15) is not

the Mie-Grineisen equation of state. However, a parameter X analogous to

the Grineisen ratio may be defined by

P P (V)
X(E,V) = V (43)E - E (V)

where P,(V) is some reference curve in the P - V plane and E,(V) is the

energy along that curve. If Pr(V) and Er(V) are the O°K pressure and

energy, then X is the ratio of the thermal pressure to thermal energy
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density. In the limit as the curve P (V) is approached at rnnstant VMP,

X(E,V) approaches FPE,V). since Eq. (41) approaches the partial derivative

which defines F(E,Vl.

In earlier quarterly reports (Ref. 14) some values of X were computed

from the experimental data using the Soviet Hugoniot (Ref. 6) for solid

aluminum as a reference. Plots of the resulting values against volume

indicated a decrease of A. with decreasing volume and increasing energy.

It was pointed out that the uncertainties in X could be as large as 20 per-

cent. It now appears that this estimate of the uncertainty in X was quite

optimistic.

As mentioned earlier, the data have recently been reanalyzed. The

positions of the aluminum Hugoniots for porosities a = 1.7 and m = 2.0

have not been significantly altered. However, the Hugoniot for a 1.4

has been shifted toward the solid Hugoniot, particularly in the low pres-

sure region, due to the addition of a new point (Shot 11,477) and the

rejection of Shot 10,590 (because of the poor quality of the film record).

The resulting curves are those of figure 7. The values of X at a given

volume were substantially reduced. Sipce individual points are subject to

some scatter and the resulting values of X are so sensitive to the movement

of a Hugoniot point in the P - V plane, it appears reasonable to draw a

smooth curve through the data points in the P - V plane and then to compute

values of X from the curve rather than from individual points. It also

appears to give X a mare unique value if the 0°K isotherm is used as a

reference curve instead of the solid Hugoniot. In this case, X VPth Eth-

The OOK isotherm from the McCloskey program was used.

A plot of the points VPth against E th taken from the Hugoniot curves

and 0 K isotherm of figure 7 is shown in figure 8. The curve obtained

from Hugoniot a = 2 appears to have positive curvnture while the curves

for x = 1.0, 1.4 and 1.7 appear to have negative curvature. The points

for a = 1 cluster near the origin as thermal pressure and energy are com-

paratively low along this Hugoniot-

The values of X calculated from each of the Hugoniot curves for

a 1.4, 1.7, and 2.0 are plotted against volume in figure 9 and against

thermal energy in figure 9(b). The curves for the Hugoniot x = 1 are

values computed by the Russians from the 0K isotherm, using the Slater

reiation for F. It must be empha: ized that these values of X are calcu-

lated from the curves drawn through the data and that the drawing of
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slighly different curves would yield quite different \ values. Also, the

curves live been forced to pass through \ = 2. 1 at V ( 0 and P r 0.4 The

liugoniot. for 1 = .- is the most well definei of the three as it is based

on moe- data. The lugoniot m = 1.4 is the most questionable as it is based

upon o:ly three data points. An analysis of the above results was made to

see if the dependence on volume aid on thermal energy could be resolved in

a simple way. To achieve this, curves of , as a function of volume at. con-

stant thermal energy and as a function of thermal energy at constant volume

were plotted. The results are shown in figures 10 and 11. A maximum of

three points was available for eac '. cur-e. The minima in the X vs. Eth

curves are aue to the low values of X obtained from the a = 1.4 lugoniot.

As this |lugoniot is not well defined, no significance can be attached to

the minima. It is felt that carrying this analysis further is Vot war-

ranted with the present quantity of data. Obtaining a large amount of data

so that a statistical analysis could be applied appears to be the most

meaningful method of truly studying the behavior of Groneisen's ratio irom

shock-wave data.

Three high pressure points sere obtained by the multiple shock -ech-

nique using tungsten as a shock reflector. The data are presented in

Table IV. The values of K are calculated from the final shock state. The

internal energies of the two highest pressure points are in excess of the

sublimation energy. In considering the pressure and energy range covered

by these data compared with the single shock data on porous aluminum, the

most significant result is the fact that although it does not appear pos-

sible to definitely establish the energy and volume dependence of X, the

values obtained do not vary widely and are quite close to the zero pressure

value obtained from thermodynamic data.

The Ilugoniot data obtained from the experimnents in which preheated

solid 1060 aluminum samples were used are presented in Table V. For the

purpose of studying Gr~neisen's ratio as calculateA from thermal pressure

and energy offsets from the 00K isotherm, these data are not useful. The

offsets in the preheated Hugoniot points from the room temperature lugoniot

of solid 1060 aluminum were too small to be considered significant.

4 (P = 0, 1" = "O), A F[" = 'f~ ) t = V /CV 2.1 for alu'in-n, where B is "he isothersal bulk

--odulns and .S is the volzme coefficieat of "herual expa-sio.
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Table IV

DOUBLE &4IC0 PORS- A LUMI If D.ATA

FIRST SHOCi SECH'OU STAJ
IN.ITIAL FinalI Emergyv Fia TOTAL F..J-'

SHOT '%0- VOL,3M Prssurc lzme Ecage Press:re Fizna3 Ehpagv I
(3--)/ (ka o(e(ag kba. ) 'V ~ e 119(cu (c=3if) (I a 0909 erg

10.876 0.630 319 0.338 46.57 1 984 0.270 44.30 92.53 1.90

11.305 0.631 426 0.330 64.11 1.261 0.261 58.20 123.97 1.87

11.305 0.741 373 0. 60 71-05 1.244 0.282 63.0 135.7- .03

a E = n'l + LE, + 1.661 109 errs/g.
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Table V

tiUQ0OICT DATA FOR PREHEATED A )F M(O TEMPERFATURE

SOLID 1060 ALU3INL

To  SHOCK PARTICLE FPEE-SIMFACE PI EI- E0
VELOCITY VELOCITY VELOCITY M 3 (erg/g)

(°Q (=I/psec) (unp-mec) (..=IaAsec) (kb() 3

342 8.82 2.79 5.47 648 0.264 44.6 x 109

17 8.76 2.77 5.48 656 0.252 38.7 x 109

555 8.56 2.76 5.27 611 0.262 43.3 X 109

17 8.82 2.70 5.14 647 0.257 36.6 x 109

543 8.24 2.23 4.66 475 0.282 30.1 x 109

17 8.14 2.21 4.56 486 0.270 24.3 i 109

a Ea egy i.-crease relative to state P = 0. T = 170C.

As a consistency check some Hugoniot points for solid room temperature

1060 aluminum of measured initial density 2.70 g/cm
3 were obtained by the

same technique used on the porous samples. The points, shown on figure 7,

are in good agreement with the Soviet Hugoniot
5 for solid aluminum at low

pressures-and oniy fair at the highest pressures.

2. TEFLON DATA

Ten data points on solid and porous Teflon (see Table VI) were ob-

tained using the iame explosive driver systems and impedance match tech-

nique (2024 alumiium standard) as was used in obtaining the porous aluminum

Tabie VI

SOLID AND POROUS -,EFLOY DATA

-- I

Sl" NO. j - 'V P ."
(gc,3 C (a4ec) Mbar) (u"c) (ca 3 Is) (109 ercs!)

11.570 0.7828 4_374 103 2.985 0.4057 44.87
11.53 Z.7782 . 564 175.5 3.985 0.3780 79.58
11,562 0_78 i 6.086 2W.0 4.335 0.3676 94.12

11.570 1.517 4.909 190.3 2.555 0.3160 32.64
11.563 1.524 1.42 6.207 319.0 3.373 0.2995 56.87
11.562 1.517 6.683 371.0 3.66 0.2981 66.97

11.570 1.169 5,589 269.0 I 2.215 10.2782 24.58
11.563 2.163 1.09 6.830 435.0 2.945 i0.2629 43.37
11.460 2.172 7. 105 476.0 3.080 .2608 47.50

11.362 12.163 7.262 504.0 3.20 O-285S 51:35

r Tee sbift ix tie Soviet ihBaiot descwibed earlier is vll vitim experiaextol er.o:.
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data. In figure 12 the shock velocity is plotted against the particle

velocity. The data obtained by the Avco Corporation are also included

on this graph for comparison. Figure 13 is a plot of th. lugoniot pres-

sure as a function of volume. As with the porous aluminum data. smooth

curves have been drawn through the points.

Since there is no theory at the present time as to the equation of

state of a plastic, and since the present data are preliminarv, it is

felt that further analysis should wait until more data are obtained. flow-

ever, some estimates of the Graneisen ratio can be made on the basis of

the data. In the absence of a 0 K isotherm for Teflon a few values of k

were computed from the curves drawn through the Hugoniots of porous Teflon

using the curve drawn through the Hugoniot of solid Teflon as a reference.

The results of these calculations are presented in Table VII. An estimate

of F, Grfineisen's ratio at zero pressure, was made for Teflon based upon

available zero pressure data. From the thermodynamic definition of

Grbneisen's ratio

VB r
(44)CV

where BRT is the isothermal bulk modulus and 3 is the thermal expansion

coefficient. Values of i and CY were found to be (11f. 15)

.5 = 16.5 X 10-S-C

CS, = 0.25 cal/g (at 73*C)

B T was estimated from the data of Bridgman to be 43 kbar (Ref. 16). In-

serting these values into Eq. (44) yields a value I- = 0.313.
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Table V11

CALCULATED VALUES OF A FOR TEFL0No

POROUS HUGONIOT
POROSITY

Volume Pressure Energy

(CO 6) (kbar) (109 ergs/g)

1.2 0.310 253.81.063
1.42 0.340 133 21.0 1.355

1.42 0.370 87 12.4 1.720
1.42 0.1100 44 5.63 2.047

2.78 0.370 199 91.04 0.678

2.78 0.400 127 56.2 10.783

aHugoniot of Teflon a 1.0 used as a reference curve.
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